EPR, ENDOR, and Electronic Structure Studies of the Jahn–Teller Distortion in an FeV Nitride
نویسندگان
چکیده
The recently synthesized and isolated low-coordinate Fe(V) nitride complex has numerous implications as a model for high-oxidation states in biological and industrial systems. The trigonal [PhB((t)BuIm)3Fe(V)≡N](+) (where (PhB((t)BuIm)3(-) = phenyltris(3-tert-butylimidazol-2-ylidene)), (1) low-spin d(3) (S = 1/2) coordination compound is subject to a Jahn-Teller (JT) distortion of its doubly degenerate (2)E ground state. The electronic structure of this complex is analyzed by a combination of extended versions of the formal two-orbital pseudo Jahn-Teller (PJT) treatment and of quantum chemical computations of the PJT effect. The formal treatment is extended to incorporate mixing of the two e orbital doublets (30%) that results from a lowering of the idealized molecular symmetry from D3h to C3v through strong "doming" of the Fe-C3 core. Correspondingly we introduce novel DFT/CASSCF computational methods in the computation of electronic structure, which reveal a quadratic JT distortion and significant e-e mixing, thus reaching a new level of synergism between computational and formal treatments. Hyperfine and quadrupole tensors are obtained by pulsed 35 GHz ENDOR measurements for the (14/15)N-nitride and the (11)B axial ligands, and spectra are obtained from the imidazole-2-ylidene (13)C atoms that are not bound to Fe. Analysis of the nitride ENDOR tensors surprisingly reveals an essentially spherical nitride trianion bound to Fe, with negative spin density and minimal charge density anisotropy. The four-coordinate (11)B, as expected, exhibits negligible bonding to Fe. A detailed analysis of the frontier orbitals provided by the electronic structure calculations provides insight into the reactivity of 1: JT-induced symmetry lowering provides an orbital selection mechanism for proton or H atom transfer reactivity.
منابع مشابه
EPR, ENDOR, and Electronic Structure Studies of the Jahn−Teller Distortion in an Fe Nitride
The recently synthesized and isolated lowcoordinate Fe nitride complex has numerous implications as a model for high-oxidation states in biological and industrial systems. The trigonal [PhB(BuIm)3Fe VN]+ (where (PhB(BuIm)3 − = phenyltris(3-tert-butylimidazol-2-ylidene)), (1) low-spin d (S = 1/2) coordination compound is subject to a Jahn−Teller (JT) distortion of its doubly degenerate E ground...
متن کاملElectronic Structure Investigation of Octahedral Complex and Nano ring by NBO Analysis: An EPR Study
To calculation non-bonded interaction of the [CoCl6]3- complex embedded in nano ring, we focus on the single wall boron-nitride B18N18 nano ring. Thus, the geometry of B18N18 nano ring has been optimized by B3LYP method with EPR-II (Electron paramagnetic resonance) basis set and geometry of the [CoCl6]3- complex has been optimized at B3LYP method with Aldrich’s VTZ basis set and Stuttgart RSC 1...
متن کاملStructure, EPR/ENDOR and DFT characterisation of a [Cu(II)(en)2](OTf)2 complex.
The Jahn-Teller distorted Cu(II) complex [Cu(en)2](OTf)2 1 (en = 1,2-diaminoethane) has been reported and characterised using X-ray crystallography, EPR and ENDOR spectroscopy, and DFT calculations. The solid state structure shows an intra- and inter-molecular hydrogen-bonded network via the N-H groups and the coordinated triflate anions. CW and pulsed EPR/ENDOR were used to determine the spin ...
متن کاملA Computational Study to Find the Vibrational Modes Connected with Specific Molecular Structures of Calculated Compound
The purpose of this research is to provide a deeper understanding of the planar high- symmetry configuration instability. In the ideal case, the distortion corresponds to the movements of nuclei along normal modes that belong to non-totally symmetric irreps of the high symmertry (HS) point group of molecule. The analysis of the structural distortion from the HS nuclear arrangements of the JT ac...
متن کاملElectronic Structure Investigation of Octahedral Complex and Nano ring by NBO Analysis: An EPR Study
To calculation non-bonded interaction of the [CoCl6]3- complex embedded in nano ring, we focus on the single wall boron-nitride B18N18 nano ring. Thus, the geometry of B18N18 nano ring has been optimized by B3LYP method with EPR-II (Electron paramagnetic resonance) basis set and geometry of the [CoCl6]3- complex has been optimized at B3LYP method with Aldrich’s VTZ basis set and Stuttgart RSC 1...
متن کامل